Using a micromechanical finite element parametric study to motivate a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase

نویسندگان

  • M. F. Horstemeyer
  • S. Ramaswamy
  • M. Negrete
چکیده

A multi-scale methodology that includes microscale finite element simulations, physical experiments, and a macroscale phenomenological model was used to determine the appropriate first-order influence parameters relating to void/ crack nucleation. The finite element analyses were used to examine the role of seven independent features (number of silicon particle sites, uniformity of particle sizes which were micron size, shape of particles, additional microporosity, temperature, prestrain history, and loading conditions) in debonding and fracture of hard silicon particles in a cast A356 aluminum alloy. Owing to the wide range of features that can affect void/crack nucleation, an optimal matrix of finite element calculations is generated using a statistical method of design of experiments (DOE). The DOE method was used to independently screen the parametric influences concerning void/crack nucleation by second phase fracture or interface debonding. The results clearly show that the initial temperature was the most dominant influence parameter with respect to the others for both fracture and debonding. Experiments were then performed at three temperatures to quantify the void/crack nucleation from notch tensile specimen fracture surfaces. The data verified the importance of the temperature dependence on void/crack nucleation and showed that as the temperature decreased, the void nucleation rate increased. The Horstemeyer–Gokhale void/crack nucleation model was modified to include the temperature dependence and material constants were determined based on the experimental data. This study exemplifies a methodology of bridging various size scale analyses by sorting out the pertinent cause–effect relations from the structure– property relations. 2002 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Low Cycle Fatigue Life through Simulation of Crack in Cover Plate Welded Beam to Column Connections

This paper presents a low cycle fatigue life curve by simulating a crack in a cover plate welded moment connection. Initiation of ductile fracture in steel is controlled by growth and coalescence of micro-voids. This research used a numerical method using finite element modeling and simulation of ductile crack initiation by a micromechanical model. Therefore, a finite element model of a cover p...

متن کامل

Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation

This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...

متن کامل

Effect of Microstructure Evolution on the Overall Response of Porous-Plastic Solids

Ductile fracture is the macroscopic result of a micromechanical process consisting in void nucleation and growth to coalescence. While growing in size, voids also evolve in shape because of the non-uniform deformation field in the surrounding material; this shape evolution is either disregarded or approximately accounted for by constitutive laws for porous-plastic solids. To assess the effect o...

متن کامل

A Multi-Physics Simulation Model Based on Finite Element Method for the Multi-Layer Switched Reluctance Motor

Using ANSYS finite element (FE) package, a multi-physics simulation model based on finite element method (FEM) is introduced for the multi-layer switched reluctance motor (SRM) in the present paper. The simulation model is created totally in ANSYS parametric design language (APDL) as a parametric model usable for various conventional types of this motor and it is included electromagnetic, therm...

متن کامل

Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation

In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002